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Solution of the mixed static problem for an infinite string, membrane, and plate par- 
tially supported on an elastic foundation is examined in this paper. The mixed nature of the 
problem is that a load is given on one part of the body, and on the other is equal to the 
reaction of the elastic foundation, which is unknown prior to solution of the problem. This 
reaction is proportional to the normal displacement of the body (Winkler--Voss hypothesis). 

A method is used below which had been used in [I] to solve the elastic problem of a half 
space partially being supported on an elastic foundation. 

We consider the external load applied in a bounded domain V, and denote the doumin lying 
on the elastic foundation by P. 

I. STRING ON AN ELASTIC FOUNDATION 

Let the string be along the OX axis, the domain V occupies the segment Ix[ < a. The 
string displacements w satisfy the differential equations 

d~w~z~ ~ p(x), x ~ V; ( 1 . 1  ) 
d~w/dx2 = ~W(X)'rX ~ P' ( 1 . 2 )  

where p(x) is a given total function of the load in the domain V, X > 0 is the stiffness of 
the elastic foundation (bedding coefficient). A condition at infinity w(x) § 0 as Ixl § 
and the condition of conjugation of the solution at the points x = • 

must be appended to (1.1) and (1.2), where the plus (+) and minus (--) denote the limit values 
upon approaching the point x = • from the domains P and V, respectively. 

Let us reduce problem (1.1)-(1.3) to an integral equation by using a specially selected 
fundamental solution. The fundamental solution with as yet unknown distribution density ~(~) 
is sought as the solution of the equation 

d~w/dx~= ~w(x) i+  ~(~)~(~ - -  ~), - -  ~ < ~ <  ~ ,  ( 1 . 4 )  
w ( x l - + O  ~ r  lxl ~ ~ ,  

where 6(x -- ~) is the Dirac delta function. The physical meaning of (1.4) is that the de- 
flection is sought for an infinite string lying on an elastic foundation and loaded at the 
point x = ~ by a lumped force B(~). The solution of problem (1.4) is obtained easily by using 
the Fourier transformation 

�9 2~ 7 777 2 V  ~ , - ,x _ ( 1 . 5 )  

On t he  b a s i s  o f  t he  s u p e r p o s i t i o n  p r i n c i p l e ,  s o l u t i o n  ( 1 . 5 )  i n t e g r a t e d  w i t h  r e s p e c t  Lo ~ in  
t he  domain V w i l l  s a t i s f y  ( 1 . 2 )  f o r  x ~ P .  By s a t i s f y i n g  ( 1 . 1 )  we o b t a i n  an e q u a t i o n  in  t h e  
d e n s i t y  B 

(~) = v (~) + ~ (g) a (x  - g) dg, x E V .  ( ~ .  6 )  
V 

The physical meaning of the function G is that it is the reaction of an infinite string on 
an elastic foundation to a unit lumped force. After having determined the function 13 from 
(1.6), the string deflections are determined from the formula 

W(x)=--  i ~ ( ~ ) G ( x - ~ ) ~ ,  . - - ~ < x < ~ .  ( 1 . 7 )  
V 
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Formulas (1.6) and (1.7) remain valid even in the case when V is an arbitrary bounded domain. 
It follows from the representation (1.7) that w(x) satisfies the conjugation conditions (1.3). 
If x~_ V, then on the basis of (1.6) and (1.7) it is more convenient to calculate the deflec- 
tion w from the relationship 

p(x) = ~(~ + ~w(.~)." ( I ,8) 

Let us examine the properties of the integral operator K in the right side of (1.6) in 
oo 

more detail. The kernel G of this integral operator is positive and ~ G(t) dt =i . The physi- 
--oo 

cal meaning of this last equality is that the reaction of elastic framing equals the applied 
external force. Using the properties of the kernel noted and considering the domain V bounded, 
we obtain [2] 

IIKll=maxSG(x--Dd~< ~ G(t) d t = t ,  ( 1 .9 )  
x=-V V --~ 

where here and later ]]Kil denotes the norm of the operator K acting in the space of summable 
functions LI(V) or of continuous functions C(V) in the closure V. If p~L,(V)(p~C(V)) , then 
the inequality (I .9) permits representation of the solution of (I .6) in the form of a Neumann 
series that converges normally in Ll(V) [in C(V)], and assertion on the basis of the principle 
of compressed mappings [2] that the solution obtained is unique in LI(V) and C(V). Condition 
(1.9) also permits finding the solution (1.6) by using successive approximations. The approx- 
imations obtained will here be partial sums of the Neumann series. The possibility of using 
successive approximations is quite convenient in the calculational plan for the case when the 
domain V is not simply connected. 

Let us consider certain properties of the solution of the problem (1.1)-(1,3). 

A. If p(x) > O for z~ V, then B(x) > O and w(x) < 0 on the basis of (1.8) in the do- 
main P, and tends monotonically to zero as ix1 § oo. This follows easily from the properties 
of the kernel and representation (1.6)-(1.8). 

B. Let the reaction of the elastic foundation in the domain P be denoted analogously 
to the external force p(x)=%w(x),xEP. Let the load p(z),x~ V, be such that there exists p+(s)= 
limp(x), x~ V, where s is a point lying on the interface F of the domains P and V. By virtue 

of the properties of the solution obtained there exists p_(s)'=limp(x),x~ V, 8~ F. Then the for- 
mula for the jump follows from (1.6) and (1.7) xas 

p+  (s) - -  V_ .(s) = ~ (s) , ~ ( s ) = l i m f i ( x ) ,  x E V ,  s ~ F .  ( 1 . 1 0 )  

The r e l a t i o n s h i p  (1 .10)  i s  t he  r e s u l t  o f  ( 1 . 8 )  and the  f i r s t  c o n d i t i o n  in  ( 1 . 3 ) .  The most  
i m p o r t a n t  r e s u l t  of  the  jump f o r m u l a  i s  t he  c o n t i n u i t y  c o n d i t i o n  f o r  t he  f u n c t i o n  p(x)  a t  
t he  p o i n t s  +a:  ~(s)  = O, s = +a.  

The properties of the solution are analogous to those obtained in [I]. However, the 
possibility of obtaining a solution in the final expressions for the string permits refor- 
mulation of the continuity condition for p(x) during passage through the boundary F in quan- 
tities known a priori. We use the notation 

q(~)-- j" j' p(~)d~dTI i p(~ ) (z--~)d~, 

q' (a) + ]/~ q (a) ho ' q' (a) -5 ]/~ q (a)'' 
ni=-- 2 ( l ~ - a V ~ )  ' - -  , 2 r E  

( t h e  p r imes  d e n o t e  d i f f e r e n t i a t i o n ) .  By d e f i n i t i o n  of  p(x)  we have  in  t he  domain P 

pC x) = 2~w(x) = --),(q(x) + Alx + Ao) 

and t he  c o n t i n u i t y  c o n d i t i o n  f o r  p(x)  t a k e s  t he  form 

p +(s) -- k(q(s) -5 A1s -5 Ao) = O, s = +a. (I . 1 I) 

Condition (1.11) can be simplified by using the symmetry of p(x). In the case of an even 
(odd) function p(x) the continuity condition has the form 
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p+(s)-7, p(~)(s-~)d~-~ Vi(t-+V~.(s+o.)) v ( r  
. 2 

--12 ~fX 

The e q u a l i t y  ( 1 . 1 ] )  imposes a c o n s t r a i n t  on the  known f u n c t i o n  p(x)  f rom 1 . 1 ) .  

2. MEMBRANE ON AN ELASTIC FOUNDATION 

Let the membrane occupy the plane OXY. In this case we have instead of (1.1)-(1.3) 

Aw = p(x, y), (z, y) ~ V; (2 .1 )  
Aw ---- gw, (x, y) ~ P, (2 .2 )  

where k = 32/3X 2 + 32/3y 2 is the Laplace operator. The condition at infinity 

w(x,y)-+O for r = ] / ~ - ~ o o  (2 .3 )  

and t he  c o n d i t i o n  on the  i n t e r f a c e  F be tween  domains P and V 

w§ = w_, (owlO~n)+ = COw~an)_ ( 2 . 4 )  

must be appended to  ( 2 . 1 )  and ( 2 . 2 ) .  The s u b s c r i p t s  +, - - h a v e  the  same meaning as in Sec .  1, 
and a /3n  i s  the d e r i v a t i v e  a l o n g  the  normal  to  F. 

We use the solution of the auxiliary problem 

aw = ~ ( ~ ,  y)  + "~(~, n ) 6 ( ~  - ~, y - ~ ) ,  r ~>.o, ( 2 . 5 )  

W - - + 0 ,  r - - - ~ c ~  . 

to  s o l v e  the  f o r m u l a t e d  p rob lem ( 2 . 1 ) - ( 2 . 4 ) ,  where 6 ( x -  ~, y -  n) i s  t he  D i r a c  d e l t a - f u n c t i o n  
The physical meaning of problem (2.5) is that the deflection is sought for a membrane occu- 
pying the whole OXY plane and lying completely on an elastic foundation loaded here at the 
point (g, h) by a lumped force 8({, n). 

Because of axial symmetry the solution of problem (2.5) is easily obtained by using the 
Hankel transform: 

W~z, y)=  ~3(~, ~1) f t Jo(Pt )  d t _ _ ~ ( ~ ,  ~1) K0 (p ~/~) = _  ~(~, l])fi (p) (2 .6 )  
- -  . 2 ~  O ~ , + t  2 ' -  2~ %" 

' 0 �9 

p = 2/(7 ~ ~)' + (y - ~)', " 

where 

K0 (x) = - - l n 4 / 0  (x) q- ~ . ~ ( 1 + t )  
i=O 

(2.7) 

is the Macdonald function [3], and r n .  is the Euler @-function. The phys- 

ical meaning of G is the same as in the problem of a string (Set. I). 

Let (~,~)~ V, then if B(r q) = O for ($~ q)~P, the fundamental solution (2.7) satisfies 
Eq. (2.2) in the domain P. We take the superposition of the fundamental solutions (2.6) in 
such a manner as to satisfy (2. I). We obtain an integral eqution in the density 

~ (x, y) -- ~ y  ~ (~, "q) G (p] d~dr] -- p (x, y), (x, y) ~ V ( 2 . 8 )  

and an i n t e g r a l  r e p r e s e n t a t i o n  f o r  the s o l u t i o n  of  problem ( 2 . 1 ) - ( 2 . 4 )  

'y[ w (z, U) = ---~- ~(~,n)G(O)d~dq,  - - o o < z , y < o o .  ( 2 . 9 )  
g 

Let us note as a result of (2.8) and (2.9) a formula representing the dependence between the 
distribution density for the lumped forces B, the displacement w, and a given load p in the 
doma in V : 
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p(~, v) = ~(.*, v) + x,,,(x, v), (~,v)  ~ v.  ( 2 .  lO) 

Let us list the properties of the kernel G that are needed later: 
co 

) 
--oo 

To prove the last equality, it is sufficient to go over to polar coordinates and to use for- 
mula 6.521.2 [3]. The mechanical meaning of this relationship is the same as in the case of 
the string. In contrast to the case of the string, the kernel G has a logarithmic singularity 
at zero [see (2.7)]. 

These properties of the kernel permit literal repetition of the derivation of almost all 
the properties of the solution analogously to the case of the string in Sec. I, starting with 
(1.9). The distinction is just that the continuity condition for p(x, y) for passage through 
the boundary F is not successfully written down explicitly. 

Because (2.8) allows of solution by successive approximations in the case when the do- 
main V is bounded, the numerical solution of problem (2.1)-(2.4) is possible for a suffi- 
ciently complex configuration of the domain V. Therefore, the solution of (2.8) reduces, 
in practice, to a calculation for the (n + 1)-th iteration of expressions of the form 

J" J'g=($,~l)G(p)d~d 11 +p(x,y). After having solved (2.8) with adequate accuracy, the membrane de- 
V 

flections w are determined by means of (2.9) [it is more convenient to use (2.10) for the 
domain V]. 

To illustrate the possibilities of the method, the problem (2.1)-(2.4) was solved numer- 
ically in the case when the domain V is a square 0 < x, y < I. The load p(x, y) in the do- 
main V was assumed constant (it can be considered one without limiting the generality). 

Diagrams of the membrane deflections along the line y = x (x ~> 0) are shown in Fig. I, 
and along the lines y = I, y = I/2 (x >/ 0) in Fig. 2. It is characteristic for the deflection 
distribution that upon reaching the extremum for x = I/2, y = I/2 they grow monotonically to 
zero at infinity. By using Figs. I and 2 it is easy to obtain the reaction of the elastic 
foundation at points where the deflections are presented. To do this it is sufficient to 
multiply the value of the deflection by the stiffness X of the elastic foundation. 

3. PLATE ON AN ELASTIC FOUNDATION 

Retaining the notation and assumptions used in the membrane problem (Sec. 2), we examine 
the problem of a plate lying partially on a Winkler elastic foundation. We have 

A~w= --p(x, V), (x, v) ~ V; (3. I) 
A~w = --~w, (z, y ) ~  P, ( 3 . 2 )  

where h 2 = 32/3x 4 + 234/3x23y2 + 3~/3y 4 is the biharmonic operator, the condition at infinity 
is w(x, y) § 0 as r § ~ and the condition on the interface F of the domains P and V is 

,v+ = w _ ,  (ohwlonk)+-- (akwlOnh)_, k = t, 2, 3 .  ( 3 . 3 )  

A n a l o g o u s l y  t o  S e c s .  1 a n d  2 ,  we c o n s i d e r  t h e  s o l u t i o n  o f  t h e  a u x i l i a r y  p r o b l e m  

a2u; ---- - - ~ , w ( x , v )  _{i [5($, ~l)8(x - -  ~j, y - -  ~1), r ~> O, ( 3 . 4 )  
w---~O~ r - - ~ o o  t " 
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which can be obtained by using the Hankel transform 

0 

(kei (x) is the Thomson function [3]). 

Let us suppose the fundamental solution by considering that (~I.N)~ F, ~(~..~) 0 for (~,N)~ 
P. Then Eq. (3.2) and condition (3.3) at infinity are satisfied because of the properties 
of the fundamental solution. Satisfying (3.1) we obtain an integral equation in the density 

�9 ~ (x, ~) - ~ S ~ (~, ~) a (p) ~d~ = - p  (=, ~),. (=, ~) ~ V .  ( 3 . 5 )  
v 

S u p e r p o s i t i o n  of  t he  f u n d a m e n t a l  s o l u t i o n  in  t h e  domain V y i e l d s  an i n t e g r a l  r e p r e s e n t a t i o n  
f o r  t h e  s o l u t i o n  o f  t he  p r o b l e m  ( 3 . 1 ) - ( 3 . 3 )  in t he  whole p l a n e :  

w (x,y) -- + .~-- ~ (li, "q) G (O) d~,d'q, --~<z,y<~. (3.6) 

V �9 . 

Analogously to the membrane problem, we have for the domain V the relationship 

- - p ( x ,  y) = .~(=, ~) - ~w(=, ~), (:c~ y) ~ V.  

T h e r e f o r e ,  t h e  p r o b l e m  of  s e e k i n g  t h e  s o l u t i o n  of  ( 3 . 1 ) ,  ( 3 . 2 )  i s  r e d u c e d  t o  the  i n t e g r a l  
equation (3.5) in the auxiliary function B. After this latter has been solved, the solution 
of the initial problem is determined by the representation (3.6). 

In contrast to Secs. 2 and I, the kernel G of (3.5) is a smooth sign-variable function, 

where a neighborhood of zero exists in which G > O. As before, ~J'G(p) a~d~=~! but it is im- 

possible to derive the inequality IIKI; < I which underlies the investigations in Secs. 2 and 3. 
This is related to the sign-variability of the kernel. 

However, for a sufficiently small domain V the inequality IIKIi < I remains valid. In 
fact, let p0 denote a number such that 

' -- .kei(~)~0 for  ~<po,  -- ~ k e i ( ~ ) d ~ t "  
0 

Let  us  s e l e c t  t h e  d i a m e t e r  of  t he  domain V as  l e s s  t h a n  ( 1 / 2 ) p 0 ~  - 1 / 4 .  Then 

2 ~  PO 

�9 ( x , y ) ~ V  , 7  , )  

For such domains V the results of Secs. 2 and I remain valid. 

When the domain V is the square 0 < x, y < I the problem was numerically solved by the 
method presented above for the case of a constant load in the domain V. The integral equation 
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(3.5) was solved by successive approximations here. The results of the numerical computa- 
tions are presented in Figs. 3 and 4. The distribution of the function w along the line 
y = x (x ~ 0) is represented in Fig. 3, and along the lines y = I and y = I/2 (x ~ 0) in 
Fig. 4. 
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BIPERIODIC SYSTEM OF RECTILINEAR LONGITUDINAL-SHEAR CRACKS 

IN AN ELASTIC BODY 

V. G. Novikov and B. M. Tulinov UDC 539.375 

Problems of the theory of elasticity for an infinite isotropic body weakened by a bi- 
periodic system of rectilinear cracks were examined in [I-11], where they were reduced to a 
numerical solution of a singular integral equation or an infinite algebraic system. In this 
article we construct an analytic solution to a problem for a biperiodic system of rectilinear 
longitudinal-shear cracks forming a rhombic network. An expression is obtained for the macro- 
scopic shear modulus of a medium with such a system of cracks. 

I. Formulation and Solution of the Biperiodic Problem. It is known [12] that the solu- 
tions of problems of longitudinal shear reduce to determination of the function F(z) analytic 
in the region occupied by the body, where z = x + iy. Here, the stress components Oxz and 
Oyz and the displacement w are determined from the formulas 

%z - -  ~%~ = poF(z), w = ne / ( z ) ,  F(z) =/ ' (z) ,  ( 1.1 ) 

where ~0 is the shear modulus. 

Let an infinite elastic plane xOy be weakened by a biperiodic system of rectilinear slits 
parallel to the real axis. It is assumed that the fundamental parallelogram of periods has 
the form of a rhombus. A slit is located inside the parallelogram across the diagonal (Fig. 
I). On the edges of the slits we specify a self-balanced load which is equal at congruent 
points 

ayz T --r(x), Ixl < L  y = 0 .  ( 1 . 2 )  

We use 2g(x) to designate the discontinuity of the displacement in the transition across 
the slit 

2g(~) = ~(~, + o  ) - w ( ~ ,  - o ) ,  IXl ~ l. 

Let the applied load T(x) be an even function of the coordinate x. Then T(x) = T(--x) 
and, by virtue of the symmetry of the problem, the function F(z) is an even biperiodic func- 
tion. It can be shown [13, 14] that F(z) is expressed through the derivative of the function 
g(x) in the form 

l i ~g'(t)P'(t)dt ( 1 . 3 )  
(z) = ~ ~(t) - P (3' 

0 

where P(z) is an elliptic Weierstrass function. The primes denote differentiation with re- 
spect to the argument. 
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